【PYTHON OPENCV】 Face tracking using dlib frontal face detector for initialization and dlib discriminative correlation filter tracker

 """

Face tracking using dlib frontal face detector for initialization and dlib discriminative correlation filter tracker """ # Import required packages: import cv2 import dlib def draw_text_info(): """Draw text information""" # We set the position to be used for drawing text and the menu info: menu_pos_1 = (10, 20) menu_pos_2 = (10, 40) # Write text: cv2.putText(frame, "Use '1' to re-initialize tracking", menu_pos_1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) if tracking_face: cv2.putText(frame, "tracking the face", menu_pos_2, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) else: cv2.putText(frame, "detecting a face to initialize tracking...", menu_pos_2, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Create the video capture to read from the webcam: capture = cv2.VideoCapture("istockphoto-1131308747-640_adpp_is.mp4") # Load frontal face detector from dlib: detector = dlib.get_frontal_face_detector() # We initialize the correlation tracker. tracker = dlib.correlation_tracker() # This variable will hold if we are currently tracking the face: tracking_face = False while True: # Capture frame from webcam: ret, frame = capture.read() # We draw basic info: draw_text_info() if tracking_face is False: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Try to detect a face to initialize the tracker: rects = detector(gray, 0) # Check if we can start tracking (if we detected a face): if len(rects) > 0: # Start tracking: tracker.start_track(frame, rects[0]) tracking_face = True if tracking_face is True: # Update tracking and print the peak to side-lobe ratio (measures how confident the tracker is): print(tracker.update(frame)) # Get the position of the tracked object: pos = tracker.get_position() # Draw the position: cv2.rectangle(frame, (int(pos.left()), int(pos.top())), (int(pos.right()), int(pos.bottom())), (0, 255, 0), 3) # We capture the keyboard event key = 0xFF & cv2.waitKey(1) # Press '1' to re-initialize tracking (it will detect the face again): if key == ord("1"): tracking_face = False # To exit, press 'q': if key == ord('q'): break # Show the resulting image: cv2.imshow("Face tracking using dlib frontal face detector and correlation filters for tracking", frame) # Release everything: capture.release() cv2.destroyAllWindows()

No comments:

Top 3 UX Design Articles of 2024 to Remember

Based on most subscriptions ͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­...

Contact Form

Name

Email *

Message *